B. N.BANDODKAR COLLEGE OF SCIENCE, THANE F.Y.B.Sc. THEORY EXAMINATION MARCH 2014 SEMESTER II USMT 201

DURATION:2 HOUR

MARKS:60

N.B.: 1 All questions are compulsory.

Q.1 Attempt any THREE.

- (1) For $u, v \in \mathbb{R}^3$, Prove that $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2)$. (5)
- (2) Find parametric equation of the line passing through the point (1, 2, 3) in the direction (7, -1, 9).
- (4) Convert the Polar equation $r = 1 + \cos\theta$ into Cartesian equation. (5)
- (5) Find spherical co-ordinate system whose cylindrical co-ordinates are $(1, \frac{\pi}{4}, 2)$.
- (6) Define distance from the point to the plane. Find the distance from the point P=(1, 2, 3) & the plane is 2x + 3y + 4z = 5.

Q.2 Attempt any THREE

- (1) Evaluate the limit (5)
 - (i) $\lim_{(x,y)\to(1,-2)} \frac{x^2-y^2}{x+y}$ (ii) $\lim_{(x,y)\to(3,1)} \frac{x+y-4}{\sqrt{x+y}-2}$
- (2) State Sandwitch Theorem. Use it to find $\lim_{(x,y)\to(0,0)} (x+y) \sin\frac{1}{x+y}.$ (5)
- (3) By using Limit along the Path test, Show that $\lim_{(x,y)\to(0,0)} \frac{-xy}{x^2+y^2}$ does not exist at (0,0)
- (4) Define Bounded set in R^2 . Show that the set $A = \{ (x, y) \in R^2 / -1 \le x \le 1, 0 \le y \le 2 \}$ is bounded set.
- (5) Define Continuity of the function $f: \mathbb{R}^2 \to \mathbb{R}$ at (a, b). Check whether the function, $f(x,y) = \frac{x^2 y^2}{x y}$ for $x \neq y$

= 2 for x = y

is Continous or not at the point (1,1).

	(6)	Find the Level curves of $f(x,y)=y-x^2$ for $c=0, 1, -2, 3$.	(5)
2.3		Attempt any THREE.	
	(1)	Find Partial Derivative of $f: \mathbb{R}^2 \to \mathbb{R}$, for $f(x, y) = x^2 - 2y$ at $(-1, 1)$ using definition.	(5)
	(2)	Define (i) Mixed Derivatives theorem. (ii) Differentiability of function of two variable.	(5)
	(3)	Using the Chain Rule, Find $\frac{dz}{dt}$ at $t = 1$ for $z = f(x, y) = x^2 + y^2$,	(5)
	(4)	where $x(t) = \cos t + \sin t$, $y(t) = \cos t - \sin t$. Define Directional derivatives. Find Directional derivatives of	(5)
	(5)	$f(x,y) = -x^2 + y \text{ at } (2,3) \text{ in the direction } (1,1).$ Find $\frac{dy}{dx}$, if $f(x,y) = y e^x + x \sin y - 2 = 0$ at $(0,2)$, by implicit	
	(6)	differentiation. Find the Local extreme values of $f(x, y) = 3x^2 + y^2 - 3xy + 6y - 4y$.	(5) (5)
.4		Attempt any THREE.	
	(1)	Convert the Cylindrical Co-ordinates $(2, \frac{3\pi}{2}, -1)$ and $(2, \frac{\pi}{6}, 0)$ to	(5)
	(2)	Cartesian Co-ordinates. Find the equation of the plane passing through $A = (0, -2, 1)$, $B = (2, 0, 2)$ & $C = (1, 1, -1)$.	(5)
	(3)	Show that the following using ε - \emptyset definition. $\lim_{(x,y)\to(1,2)} 2x + 3y = 8$	(5)
	(4)	Using Algebra of limits, Evaluate $\lim_{(x,y)\to(2,-2)} \sqrt{(x^2+y^2+1)}$	(5)
	(5)	Find the equation of Tangent plane for the function $f(x, y) = xy^2 + x^2y$, at $(-1, 2)$.	(5)
	(6)	Find the Gradient vector of function $f(x, y) = y^2 - 4x + 1$, at (1,1). Evaluate the directional derivative of f at (1, 1) along the direction (1,-1).	(5)
