B.N.Bandodkar College of Science, Thane USPH 401

March 2017

		With Cir AVI /	
Du	ratio	on: 2Hr 30Min Marl	ks 75
		N.B. All Questions are compulsory.	
		Figures on the right indicate marks.	
		Symbols have usual meanings.	
2.1	A	Attempt any Two.	16
	i	Explain Fresnel diffraction from a straight edge and obtain the expression for	
		optical path difference $\delta = \frac{x^2 a}{2b(a+b)}$.	
	ii	Give account of Fresnel type of diffraction effect produced by a narrow	
		rectangular slit .Explain if a point is near the geometrical shadow.	
	iii	Distinguish between the prism spectra and grating spectra.	
	iv	Explain intensity distribution on the screen when a monochromatic light	
		normally illuminates the plane transmission grating. Give equation for grating	
		law.	
	В	Attempt any One.	4
	i	State Fresnel assumptions for the diffraction phenomena with diagram.	
	ii	Determine the number of lines in 1cm of the grating surface when a plane	
		transmission grating diffracts second order through 30° for incident light of	
		wavelength $5000A^{o}$.	
0.2	A	Attempt any Two.	16
	i	Write a short note on construction and working of Michelson interferometer	
	ii	Explain the principle and working of Fabry-Perot interferometer	
	iii	Deduce an expression for the resolving power of a prism. Show that it is	
		independent of the angle of prism.	
	iv	Drive an expression for the resolving power of the diffraction grating.	
	B	Attempt any One.	4
	i	Explain how to determine the refractive index of gases by using Michelson	
		Interferometer.	
	ii	Explain Rayleigh's criterion. What is meant by "Resolving power of an optical	
0.3	A	instrument"? Attempt any Two.	16
2.3	A	State Brewster's Law and obtain the expression for it.	10
	ii	Two linearly polarized electromagnetic waves moving along Z axis such that	
	T.E.	The month bounded and another than the title atoms a min paor than	

their electric field vectors are along X axis are given by,	
$E_1 = \hat{i} a_1 \cos(kz - \omega t + \theta_1)$ and $E_2 = \hat{i} a_2 \cos(kz - \omega t + \theta_2)$. Find the resultant of	
the superposition of the waves.	
.Discuss the different methods of obtaining the plane polarized light.	
With the help of suitable diagram explain the Malus Law.	
Attempt any One.	4
Quartz crystal has refractive indices 1.553 and 1.544 for extra ordinary and	
ordinary ray respectively. Find the thickness of the quarter wave plate for light	
of wavelength 5890A ⁰ .	
If refractive index of a certain material is 1.33 find the polarizing angle.	
Attempt any Three	15
Explain Fraunhoffer diffraction from a single slit.	
A cylindrical wire of 0.05 cm diameter is placed in front of a slit illuminated	
by light of wavelength 6000 A^0 , find the width of a band on the screen at a	
distance of 100 cm from the wire.	
Explain how the wavelength of a monochromatic source is determined by using	
Michelson Interferometer.	
Explain how the Fabry-Perot interferometer is used to compare the two wavelengths.	
Explain the terms plane polarized light, circularly polarized light, elliptically	
polarized light and unpolarised light.	
What is double refraction? Explain the terms positive crystal and negative	
crystal.	

iii iv B

ii A

i ii

iii

iv v

vi